

Reciprocating Engine Peer Review

23 April 2002

Cummins Inc.

Dave Bolis

Cummins Overall Purpose Cummins DOE Program Work Summary

Overall Program Purpose

- Develop Advanced Natural Gas Engine Technologies for Enhanced Power Generation Products.
- Long-Term Objectives:
 - 50% BTE
 - $-0.1 \text{ gm NO}_{x}/\text{bhp-hr}$
 - Competitive Life Cycle Costs.

Current Program Objectives

- Product Demonstration in 2005
- 44% Brake Thermal Efficiency
- BSNO_x of 0.1 gm/bhp-hr
- Improve Customer Value
 - Maintain or Improve Durability, Reliability and Operating Cost.

Technical Challenges & Strategies

- Our Primary Path Includes; High Power Density, Leaner Combustion, and Improved Engine Subsystems Designs to Achieve:
 - Durable Ignition Systems
 - Faster & More Efficient Combustion
 - Combustion Sensing
 - Knock Control
 - Exhaust Energy Recovery
 - Friction Losses
 - NO_x Aftertreatment
 - High Temperature Material Capability

Technical Challenges & Strategies

Cu	ımmi	ins T	echr	olog	ју Ас	tiviti	ies	Technical Challenges	Customer \			Values	
Spark Ignition Evaluation	IdΩ	НРОІ	Base Engine	Air Handling	Turbo- Compound	Alternator	Aftertreatment	for 50% BTE & 0.1 gm NO _x /hp-hr	Fuel Efficiency	Operating Cost	Durability & Reliability	Maintainability	Emissions, NO _x
+	+	+		+	-			Operation at High BMEP	+		-	-	
+	+	+						Durable Ignition Systems		+	+	+	
+	+	+		+	-			Rapid/Efficient Combustion	+				+
+		+						Combustion Sensing	+		+	+	+
		+						Knock Control	+		+		
				+	+		-	Exhaust Energy Recovery	+			-	
			+	+				Friction Losses	+				
					-		+	NO _x Aftertreatment		-		-	+
			+					High Temperature Material Capability			+	+	

Each Technical Challenges Typically Affect Several Customer Values And Are Typically Addressed by Several of Our Activities

Major Partners & Roles

- Oak Ridge National Lab Spark Ignition and Materials Improvements for High Power Density Operation
- Colorado State University Knowledge to Go Places
- Colorado State University Diesel Pilot Experimentation for High Power Density & Efficient Combustion
- Ricardo Inc Diesel Pilot Modeling for High Power Density & Efficient Combustion

Westport Innovations - HPDI (High Pressure Direct Injection) Combustion for High Output & Efficient Combustion

Westport

Tasks and Activities

Task 1 Technology Development

- Spark Ignition Combustion System
- Diesel Pilot Ignition
- •HPDI
- Air Handling
- Aftertreatment
- ·Base Engine

Task 2 SubSystem Development

- Spark Ignition Combustion System
- Diesel Pilot Ignition
- •HPDI
- •Air Handling
- Aftertreatment
- •Base Engine
- Turbocompound
- •Alternator

Task 3 Prototype Engine Design Integration & Test

- •Architecture Selection & Virtual Build
- •Prototype Design Integration & Test
- •Product Charter & Contract

Task 4 Production Design and Development

- Production Design
- Performance Development
- •Alpha & Beta Builds & Development

Task 5 Customer Demonstration

- •Customer Site Installation & Support
- Demonstration
- •Final Report

Spark Ignition Evaluation

Objectives:

• Develop Fast & Efficient Combustion and Advanced Spark Ignition Hardware for High Power Density (20+ Bar BMEP)

Status:

- Multiple spark plug designs identified w/potential longer life. First test w/std plug indicates life at 20bar BMEP short of requirements.
- Miller cycle, for efficient combustion, synergistic with air handling system efficiency improvements. Early results indicate combustion OK.
- Development agreement reached with our supplier to pursue a producible piston based on our best to date fast burn combustion system.

Spark Plug Life

Objectives:

- •Significantly Extend Life at High Power Density
- Build on Existing Technology
- Acceptable Life Cycle Costs

Status: Baselined Life @ 20bar & Measurement Approach, Advanced Plug Designs Available, 3 Engines Used for Test, Analysis Pre/Post Test Being Expanded

Benefits: Improves Existing Technology

Risks: Certainty of Being Cost Effective @ Required Ratings

Next Steps: Engine Tests & Plug Erosion
Diagnostics Development

Entire Ignition System Being Studied for Improved Life:

Materials; Ir+

Geometries

Electrical Supply

Engine Interface

Diesel Pilot Ignition

Objectives:

- •Develop a Diesel Pilot Ignition System for High Durability Ignition
- •Demonstrate Performance, and Cost Effectiveness Against Alternatives

Status: Technical Requirements Supported by Modeling & Design Integration, Test Engine Ready, Literature & Patent Search Conducted

Benefits: Technology Aligns with long life technology (diesel engine)

Risks: Time to prove Durability & Reliability Meet Expectations, Level of Emissions

Next Steps: Concept Engine Test Validation and Model Development

VECTIS Pilot Ignition Modeling

Fuel Pump and Accumulator Installation

HPDI (High Pressure Direct Injection)

Objectives: Develop Fuel System for Improved Combustion and Reduced Parasitics

Status:

- 1 gm NO_x Achieved with Efficiency 5% Better than Spark Ignited.
 - The next generation fuel system and controls improved emissions, thermal efficiency and engine governing.
 - Controlling the compressor provides highest off-design efficiency.
- Combustion Sensing Design Concepts Developed and Prototype Testing Successful
- An Innovative Compressor Design Prototyped.

Cummins DOE ARES Program High Pressure Direct Injection

Injector Unit

Natural Gas Jet

Diesel Pilot Fuel Spray

- 1) HPDI Diesel Pilot Auto Ignites Providing Ignition
- 2) HPDI Injects Natural Gas for Combustion & Power

Combustion Sensor

Highlights:

- Significant progress on the algorithms and hardware required for Combustion sensing.
- Demonstrated Accuracy Required for 5% efficiency improvements
- Evaluation underway to select best sensor/supplier alternatives.

Next Steps:

- •Finalize sensor design/supplier
- Development and durability

Air Handling

• Turbocharger matching shows that overall turbocharger efficiencies 1% point less than requirement for 2005.

• Further Intake Port development is needed to recover flow capacity loss with design for swirl (fast combustion).

Results & Accomplishments

Aftertreatement

- Technology for 0.1 gm NO_x appears feasible. Early performance is achieving 95+ % NO_x conversion.
- A preferred catalyst supplier chosen.

Market Study

• The multi-company market study started by EEA consultants.

Technology Progress Summary

		nental ements	Targe Improv	Status	
Technology	BTE	NOx	BTE	NOx	
HPDI	2.0		2.0		GREEN
Air Handling	0.5		1.1		GREEN
Fast Burn	TBD	e P	1.0	Ţ	Ī
Chamber	[0.1]		[0.5]		YELLOW
Swirl	[0.5]		[0.5]		GREEN
Miller			1.0		GREEN
Aftertreatment	TBD	95+%	-0.4	95%	GREEN

Numbers in [] are not additive with rest of numbers in each column

GREEN - Achieving Target w/Identified Path

YELLOW – Reaching Target In Question w/Available Metrics

RED – Target Not Met & Do Not Have Path to Achieve

FY 2002 Plans & Expectations

TO 11 . T . 1.1	- • -		
Pilot Ignition	Degian b	Pauliraments	
Pilot Ignition	DOSIZII I	Coquironionis	

June 02

• Prove Next Generation HPDI Performance

August 02

• Design Concept for Low Parasitics

October 02*

• Demonstrate Life Limits S.I. Systems

November 02*

Limits of Turbocharging System Optimization

December 02*

• Demonstrate Fast Burn System Producibility

January 03*

Second Generation Diesel Pilot System Operational

April 03

Turbocompound Application Design Viability

April 03

• Air Handling System Tradeoffs Defined

July 03

* Milestone Moved >4 Months Out From Original Plan

Project Risks

- Readiness for Improved Efficiency Product Launches with New Ignition/Combustion Approach(es)
- Cost Effective Exhaust Aftertreatment

Summary of Results

- HPDI System Achieved 5% Better BTE Than Current SI System
- Miller Cycle Gives Several Beneficial BTE Effects
- Spark Ignition Life Tests Underway w/Life Improvements Defined
- Diesel Pilot Design Progressing Toward 1st Demonstration June 02
- Combustion Sensor Prototype Successful
- Turbomachinery Close to Meeting 2005 Expectations
- Aftertreatment Capable of Required NO_x Reduction for 2005
- Have Confidence Half of Improvements Required to Reach 44% BTE Achievable, Complete Validation Expected Next Year
- Project Risks As Expected; Ignition/Combustion & Aftertreatment

Impact of Project on ARES Program

Cummins is Developing Technologies Towards DOE Goals

- 50% Fuel to Electric Conversion Efficiency Targeted with <0.1 g/hp-hr NO_x.
- Fuel Flexibility to Include Multiple Gases & Aggressive Fuels. The Current & New Technologies are Compatible w/Hydrogen.
- Cost of Power Requires Continuous Improvement for the Market, consistent with DOE's 10% Lower Cost of Power. This includes improving reliability and maintainability.

Technology Phased Into the Market by:

- Three major product introductions by 2010, First in 2005
- Expect Several Technologies Can Be Marketed Independently

Conclusion

- Cummins View of the Market Requirements Aligns Well with DOE
- Making Good Progress on Technology Development.
- Expect to be in Position to Define Phase 1 Engine Architecture by Late 2003